Abstract

In this study, we constructed a model to predict abnormal cardiac sounds using a diverse set of auscultation data collected from various auscultation positions. Abnormal heart sounds were identified by extracting features such as peak intervals and noise characteristics during systole and diastole. Instead of using raw signal data, we transformed them into log-mel 2D spectrograms, which were employed as input variables for the CNN model. The advancement of our model involves integrating a deep learning architecture with feature extraction techniques based on existing knowledge of cardiac data. Specifically, we propose a multi-channel-based heart signal processing (MCHeart) scheme, which incorporates our proposed features into the deep learning model. Additionally, we introduce the ReLCNN model by applying residual blocks and MHA mechanisms to the LCNN architecture. By adding murmur features with a smoothing function and training the ReLCNN model, the weighted accuracy of the model increased from 79.6% to 83.6%, showing a performance improvement of approximately 4% point compared to the LCNN baseline model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.