Abstract

ObjectivesAccurate automatic liver segmentation has important value for subsequent tumor segmentation, diagnosis, and treatment. In this paper, a Multiscale Cascaded Feature Attention U-Net (MCFA-UNet) neural network model was proposed to solve the problem of edge detail feature loss caused by insufficient feature extraction in existing segmentation methods. Material and methodsMCFA-UNet is a 3D segmentation network based on U-Net encoding and decoding structure. First, this paper proposes a multiscale feature cascaded attention (MCFA) module, which extracts multiscale feature information through multiple continuous convolution paths, and uses double attention to realize multiscale feature information fusion of different paths. Second, the attention-gate mechanism is used to fuse different levels of feature information, which reduces the semantic difference between coding and decoding paths. Finally, the deep supervision learning method was employed to optimize the network segmentation effect through the feature information of each hidden layer in the decoding path. ResultsMCFA-UNet was evaluated on LiTS and 3DIRCADb datasets. The Dice scores of 0.955 and 0.981 are obtained respectively. Compared with the baseline network, the segmentation accuracy is improved by 5% and 3.5%. ConclusionExperimental results show that MCFA-UNet has more accurate segmentation performance than baseline model and other advanced methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.