Abstract

With the advancement of technology, social media has become a major source of digital news due to its global exposure. This has led to an increase in spreading fake news and misinformation online. Humans cannot differentiate fake news from real news because they can be easily influenced. A lot of research work has been conducted for detecting fake news using Artificial Intelligence and Machine Learning. A large number of deep learning models and their architectural variants have been investigated and many websites are utilizing these models directly or indirectly to detect fake news. However, state-of-the-arts demonstrate the limited accuracy in distinguishing fake news from the original news. We propose a multi-channel deep learning model namely Mc-DNN, leveraging and processing the news headlines and news articles along different channels for differentiating fake or real news. We achieve the highest accuracy of 99.23% on ISOT Fake News Dataset and 94.68% on Fake News Data for Mc-DNN. Thus, we highly recommend the use of Mc-DNN for fake news detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.