Abstract

Accurately predicting the driver genes of cancer is of great significance for carcinogenesis progress research and cancer treatment. In recent years, more and more deep-learning-based methods have been used for predicting cancer driver genes. However, deep-learning algorithms often have black box properties and cannot interpret the output results. Here, we propose a novel cancer driver gene mining method based on heterogeneous network meta-paths (MCDHGN), which uses meta-path aggregation to enhance the interpretability of predictions. MCDHGN constructs a heterogeneous network by using several types of multi-omics data that are biologically linked to genes. And the differential probabilities of SNV, DNA methylation, and gene expression data between cancerous tissues and normal tissues are extracted as initial features of genes. Nine meta-paths are manually selected, and the representation vectors obtained by aggregating information within and across meta-path nodes are used as new features for subsequent classification and prediction tasks. By comparing with eight homogeneous and heterogeneous network models on two pan-cancer datasets, MCDHGN has better performance on AUC and AUPR values. Additionally, MCDHGN provides interpretability of predicted cancer driver genes through the varying weights of biologically meaningful meta-paths. https://github.com/1160300611/MCDHGN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.