Abstract

With the fast development of AI technologies, deep learning is widely applied for biomedical data analytics and digital healthcare. However, there remain gaps between AI-aided diagnosis and real-world healthcare demands. For example, hemodynamic parameters of the middle cerebral artery (MCA) have significant clinical value for diagnosing adverse perinatal results. Nevertheless, the current measurement procedure is tedious for sonographers. To reduce the workload of sonographers, we propose MCAS-GP, a deep learning-empowered framework that tackles the Middle Cerebral Artery Segmentation and Gate Proposition. MCAS-GP can automatically segment the region of the MCA and detect the corresponding position of the gate in the procedure of fetal MCA Doppler assessment. In MCAS-GP, a novel learnable atrous spatial pyramid pooling (LASPP) module is designed to adaptively learn multi-scale features. We also propose a novel evaluation metric, Affiliation Index, for measuring the effectiveness of the position of the output gate. To evaluate our proposed MCAS-GP, we build a large-scale MCA dataset, collaborating with the International Peace Maternity and Child Health Hospital of China welfare institute (IPMCH). Extensive experiments on the MCA dataset and two other public surgical datasets demonstrate that MCAS-GP can achieve considerable performance improvement in both accuracy and inference time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.