Abstract

An increase in pulsatile release of GnRH is essential for the onset of puberty. However, the mechanism controlling the pubertal increase in GnRH release is still unclear. The GnRH neurosecretory system is already active during the neonatal period but subsequently enters a dormant state by central inhibition in the juvenile period. When this central inhibition is removed or diminished, an increase in GnRH release occurs with increase in synthesis and release of gonadotropins and gonadal steroids, followed by the appearance of secondary sexual characteristics. Recent studies suggest that disinhibition of GnRH neurons from GABA (gamma-aminobutyric acid) appears to be a critical factor in female rhesus monkey. After central inhibition is removed, increases in stimulatory input from glutamatergic neurons as well as new stimulatory input from norepinephrin and NPY neurons and inhibitory input from ßendorphin neurons appear to control pulsatile GnRH release as well as gonadal steroids. Nonetheless, the most important question still remains: what determines the timing to remove central inhibition? Because many genes are turned on or turned off to establish a complex series of events occurring during puberty, the timing of puberty must be regulated by a master gene or genes, as a part of developmental events.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call