Abstract
Channel attention mechanisms endeavor to recalibrate channel weights to enhance representation abilities of networks. However, mainstream methods often rely solely on global average pooling as the feature squeezer, which significantly limits the overall potential of models. In this paper, we investigate the statistical moments of feature maps within a neural network. Our findings highlight the critical role of high-order moments in enhancing model capacity. Consequently, we introduce a flexible and comprehensive mechanism termed Extensive Moment Aggregation (EMA) to capture the global spatial context. Building upon this mechanism, we propose the Moment Channel Attention (MCA) framework, which efficiently incorporates multiple levels of moment-based information while minimizing additional computation costs through our Cross Moment Convolution (CMC) module. The CMC module via channel-wise convolution layer to capture multiple order moment information as well as cross channel features. The MCA block is designed to be lightweight and easily integrated into a variety of neural network architectures. Experimental results on classical image classification, object detection, and instance segmentation tasks demonstrate that our proposed method achieves state-of-the-art results, outperforming existing channel attention methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.