Abstract

Apple is an important horticultural crop, but various adverse environmental factors can threaten the quality and yield of its fruits. The ability of apples to resist stress mainly depends on the rootstock. Malus baccata (L.) Borkh. is a commonly used rootstock in Northeast China. In this study, it was used as the experimental material, and the target gene MbWRKY53 was screened through transcriptome analysis and Real-Time Quantitative Reverse Transcription Polymerase Chain Reaction (RT-qPCR) after cold and drought treatment. Bioinformatics analysis revealed that this transcription factor (TF) belonged to the WRKY TF family, and its encoded protein was localized in the nucleus. RT-qPCR showed that the gene was more easily expressed in roots and young leaves and is more responsive to cold and drought stimuli. Functional validation in Arabidopsis thaliana confirmed that MbWRKY53 can enhance plant tolerance to cold and drought stress. Furthermore, by analyzing the expression levels of genes related to cold and drought stress in transgenic Arabidopsis lines, it was inferred that this gene can regulate the expression of stress-related genes through multiple pathways such as the CBF pathway, SOS pathway, Pro synthesis pathway, and ABA-dependent pathways, enhancing the adaptability of transgenic Arabidopsis to cold and drought environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.