Abstract

AbstractThe goal of our work is to develop an algorithm for automatic and robust detection of global intrinsic symmetries in 3D surface meshes. Our approach is based on two core observations. First, symmetry invariant point sets can be detected robustly using critical points of the Average Geodesic Distance (AGD) function. Second, intrinsic symmetries are self‐isometries of surfaces and as such are contained in the low dimensional group of Möbius transformations. Based on these observations, we propose an algorithm that: 1) generates a set of symmetric points by detecting critical points of the AGD function, 2) enumerates small subsets of those feature points to generate candidate Möbius transformations, and 3) selects among those candidate Möbius transformations the one(s) that best map the surface onto itself. The main advantages of this algorithm stem from the stability of the AGD in predicting potential symmetric point features and the low dimensionality of the Möbius group for enumerating potential self‐mappings. During experiments with a benchmark set of meshes augmented with human‐specified symmetric correspondences, we find that the algorithm is able to find intrinsic symmetries for a wide variety of object types with moderate deviations from perfect symmetry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.