Abstract
ABSTRACTIV-VI semiconductor structures grown by molecular beam epitaxy (MBE) have been used to measure the cross-plane thermal conductivity of PbSe and PbSe/PbSnSe/PbSe multiperiod superlattice (SL) materials. Continuous wave photoluminescence (PL) measurements were used to determine epilayer temperatures localized to multiple quantum well (MQW) light emitting layers on top of various IV-VI materials structures. These data combined with finite element analysis (FEA) were used to extract cross-plane thermal conductivity values for different materials designs. Structures consisting of PbSe/PbSnSe/PbSe SL materials with multiple periodicities exhibited cross-plane lattice thermal conductivity values as low as 0.30 W/mK, a significant reduction relative to the 1.9 W/mK value for bulk PbSe. This work shows that lattice thermal conductivity reduction offers a highly viable approach for improving thermoelectric materials performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.