Abstract

This study focuses on mutation-based evolving artificial neural network (MBEANN), a topology and weight evolving artificial neural network (TWEANN) algorithm. TWEANN optimizes both the connection weights and neural network structure. Primarily, MBEANN uses only mutations to evolve artificial neural networks. An individual in an MBEANN is designed to have a set of sub-networks called operons. Operons are expected to have functions during evolution because they do not recombine with other operons. In this study, we applied MBEANN to design a controller for a robotic swarm on cooperative transport, where the following canonical evolving artificial neural network (EANN) methods do not work well. For comparison with MBEANN, we used an EANN with a fixed network structure and neuroevolution of augmenting topologies (NEAT), which is a widely used TWEANN algorithm. We confirmed that the robot controller that evolved with the MBEANN outperformed the structure-fixed EANN and NEAT controllers. In addition, we investigated the behavior of the swarm robot obtained using the proposed method, in which we deactivated each operon to extract its function. The results show that operons could have their functions, and that several operons could strengthen one another’s functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call