Abstract
Germanium (Ge) has gained much interest due to the potential of becoming a direct band gap material and an efficient light source for the future complementary metal-oxide-semiconductor (CMOS) compatible photonic integrated circuits. In this paper, highly biaxial tensile strained Ge quantum wells (QWs) and quantum dots (QDs) grown by molecular beam epitaxy are presented. Through relaxed step-graded InGaAs buffer layers with a larger lattice constant, up to 2.3% tensile-strained Ge QWs as well as up to 2.46% tensile-strained Ge QDs are obtained. Characterizations show the good material quality as well as low threading dislocation density. A strong increase of photoluminescence (PL) with highly tensile strained Ge layers at low temperature suggests the existence of a direct band gap semiconductor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.