Abstract

ABSTRACTData is presented on the optimization of several molecular beam epitaxial growth processes to provide low dislocation density and high mobility GaAs single crystals on (100) Si wafers. The substrate tilt angle, the growth temperature, and the first buffer layer structure, were investigated Tor this purpose. Using Hall measurements the GaAs layers grown on 2 or 3-degree tilt (100) Si showed consistently high mobilities which are equivalent to the homoepitaxial GaAs mobility. Transmission electron microscopy (TEM) revealed that on tilted (100) Si substrates most of the misfit dislocations were confined within the first 50 Å GaAs layer by forming a type of edge dislocation at the Si surface step edges. Also low temperature grown buffer layers always gave better morphologies and lower etch pit densities while keeping the high mobilities on overgrown GaAs layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call