Abstract
Radiative biexciton decay in a single semiconductor quantum dot (QD) is a process by which entangled pairs of photons can be generated for quantum information applications. The observation of entangled light from a QD requires minimal splitting of exciton states and the ability to isolate the neutral biexciton and exciton photoluminescence (PL) emission of the individual dot. As a consequence, the growth of QDs for this purpose is subject to simultaneous constraints on areal dot density, dot emission energy, and wetting-layer (WL) emission energy. In this work we will describe modifications to the molecular beam epitaxial (MBE) growth of In(Ga)As QDs performed to address these requirements, for the realization of samples which generate entangled light of increasing quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.