Abstract

HgCdTe has dominated the high performance end of the IR detector market for decades. At present, the cost to fabricate HgCdTe based advanced infrared devices is relatively high. One approach to address this problem is to use cost effective alternative substrate, mainly Si and GaAs. Recently, GaSb has emerged as a new alternative with better lattice matching. In this paper, recent progress in molecular beam epitaxial (MBE) growth of HgCdTe infrared material at UWA is reported. HgCdTe has been grown on GaSb substrates by MBE, and has shown a lower Etch Pit Density (EPD) and higher minority carrier lifetime in comparison to other alternative substrates. This result makes GaSb an interesting and promising alternative substrate material for HgCdTe epitaxy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.