Abstract
Epilepsy is considered to result from an imbalance between excitation and inhibition of the central nervous system. Pathogenic mutations in the methyl-CpG binding domain protein 5 gene (MBD5) are known to cause epilepsy. However, the function and mechanism of MBD5 in epilepsy remain elusive. Here, we found that MBD5 was mainly localized in the pyramidal cells and granular cells of mouse hippocampus, and its expression was increased in the brain tissues of mouse models of epilepsy. Exogenous overexpression of MBD5 inhibited the transcription of the signal transducer and activator of transcription 1 gene (Stat1), resulting in increased expression of N-methyl-d-aspartate receptor (NMDAR) subunit 1 (GluN1), 2A (GluN2A) and 2B (GluN2B), leading to aggravation of the epileptic behaviour phenotype in mice. The epileptic behavioural phenotype was alleviated by overexpression of STAT1 which reduced the expression of NMDARs, and by the NMDAR antagonist memantine. These results indicate that MBD5 accumulation affects seizures through STAT1-mediated inhibition of NMDAR expression in mice. Collectively, our findings suggest that the MBD5-STAT1-NMDAR pathway may be a new pathway that regulates the epileptic behavioural phenotype and may represent a new treatment target.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.