Abstract

Determining drug to antibody ratios (DAR) for antibody-drug conjugates (ADCs) in early research and development can be hampered by difficulties in accurate weighing of the effector payload and subsequent determination of its extinction coefficient. Two maytansinoids, DM1 and DM4, potent antimitotic agents used in clinical ADCs, were derivatized with the compact fluorophore BODIPY FL using two different linker designs. We identified DM1-mal-BODIPY as a conjugate with little through-space interaction between the maytansinoid and BODIPY chromophores. The 1:1 stoichiometry between the maytansinoid and BODIPY makes the molar concentration of both components equal and the extinction coefficient of the maytansinoid in proportion with the known BODIPY chromophore according to Beer's Law. By only derivatizing 50 μg of unpurified DM1 and analyzing about 25 μg of DM1-mal-BODIPY by UV-vis, we determined εDM1252nm and εDM1280nm as 26 355 ± 360 and 5230 ± 160 cm(-1) M(-1), respectively. These values are nearly identical to those accepted for DM1 based on weighing >100 mg of pure sample. Surprisingly, some of the maytansinoid-BODIPY conjugates that were synthesized were partially or completely fluorescence-quenched. The green fluorescence of quenched DM4-acetamide-BODIPY could be fully restored in the presence of an antibody designed to tightly bind maytansine. We exploited this observation to develop a simple "mix and read" fluorogenic immunoassay for detection of nanogram quantities of maytansinoids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.