Abstract

We present a theory in Maxwellian form for gravitational waves in a flat background. This requires us to identify the gravitational analogues of the electric and magnetic fields for light. An important novelty, however, is that our analogues are not vector fields but rather rank-two tensor fields; in place of a three-component vector at each point in space, as in electromagnetism, our fields are three by three symmetric matrices at each point. The resulting Maxwell-like equations lead directly to a Poynting theorem for the local energy density associated with a gravitational wave and to associated local properties including densities of momentum and angular momentum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.