Abstract

In this study the dynamics and stability of thin and electrically conductive aqueous films under the influence of a time-periodic electric field are explored. With the help of analytical linear stability analysis for long wavelength disturbances, the stability threshold of the system as a function of various electrochemical parameters and transport coefficients is presented. The contributions of parameters like surface tension, disjoining pressure, electric double layer (Debye length and interfacial zeta potential), and unsteady Maxwell and viscous stresses are highlighted with the help of appropriate dimensionless groups. The physical mechanisms affecting the stability of thin films are detailed with the above-mentioned forces and parametric dependence of stability trends is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.