Abstract
Nearly all theoretical analyses of Maxwell's demon focus on its energetic and entropic costs of operation. Here, we focus on its rate of operation. In our model, a demon's rate limitation stems from its finite response time and gate area. We determine the rate limits of mass and energy transfer, as well as entropic reduction for four such demons: those that select particles according to (1)direction, (2)energy, (3)number, and (4)entropy. Last, we determine the optimal gate size for a demon with small, finite response time, and compare our predictions with molecular dynamics simulations with both ideal and nonideal gasses. Also, we study the conditions under which the demons are able to move both energy and particles in the chosen direction when attempting to only move one.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.