Abstract

We establish the most general differential equations that are satisfied by the Fourier components of the electromagnetic field diffracted by an arbitrary periodic anisotropic medium. The equations are derived by use of the recently published fast-Fourier-factorization (FFF) method, which ensures fast convergence of the Fourier series of the field. The diffraction by classic isotropic gratings arises as a particular case of the derived equations; the case of anisotropic classic gratings was published elsewhere. The equations can be resolved either through classic differential theory or through the modal method for particular groove profiles. The new equations improve both methods in the same way. Crossed gratings, among which are grids and two-dimensional arbitrarily shaped periodic surfaces, appear as particular cases of the theory, as do three-dimensional photonic crystals. The method can be extended to nonperiodic media through the use of a Fourier transform.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.