Abstract

Over the years, Maxwellian Averaged Cross Sections (MACS) have been measured by neutron activation, providing a neutron energy spectrum resembling the one found inside the stars. Recently, a new method has been proposed to produce stellar spectra at different stellar temperatures (a Maxwell–Boltzmann neutron energy distribution), employing the 7Li(p,n)7Be reaction. The method is based on the idea of shaping the proton beam energy to shape the neutron beam spectrum. This method was applied to obtain a well-reproduced Maxwell–Boltzmann neutron spectrum (MBNS) at kT=28 keV. An initial proton energy of 3170 keV and an aluminum foil as a proton energy shaper were employed. Differential angular neutron energy distributions from 0 to 90 degrees in 10∘ steps were measured to obtain the 0∘–90∘ integrated neutron spectrum over a neutron flight path of 50 cm. This manuscript reports on the measurement results, confirming the method’s capability, and suggests the approach for producing a high-quality MBNS at kT=28 keV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call