Abstract

ABSTRACTWe utilize a modern continuum mechanics framework to reconsider an old problem for fluid interfaces, also addressed by Maxwell and van der Waals. We prove that their results need not be valid necessarily. This conclusion is arrived at as a consequence of questioning the existence of thermodynamic potentials and the validity of usual thermodynamic ,relations within unstable (spinodal) regions. One central result is that Maxwell's equal area rule needs not be valid and certain statistical models are shown to be internally inconsistent. Precise conditions for the validity of Maxwell's rule and the variational theory of van der Waals are established in terms of the coefficients defining the interfacial stress. Finally, a generalized continuum thermodynamics framework is developed which provides an alternative derivation of van der Waals variational theory and properly extends it to dynamic situations. However, other possibilities exist which allow a thermodynamics of fluid interfaces not necessarily restricted by the conditions of Maxwell and van der Waals. The results of the paper could be viewed as a convincing argument to utilize this framework (with the necessary modifications) to interpret more complex phenomena of phase transformations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.