Abstract
The max-product neural network (NN) and quasi-interpolation (QI) operators are here introduced and studied. The density functions considered as kernels for the above operators are generated by certain finite linear combination of sigmoidal functions, and from them inherit very useful approximation properties. The convergence and the rate of approximation for the max-product NN and QI operators are studied. Estimates involving the modulus of continuity of the functions being approximated have been derived. Several examples are provided together with some applications and graphical representations. The relations with the general theory of neural networks and sampling operators are discussed in detail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.