Abstract
Autonomous-Mobility-on-Demand (AMoD) systems can revolutionize urban transportation by providing mobility as a service without car ownership. However, optimizing the performance of AMoD systems presents a challenge due to competing objectives of reducing customer wait times and increasing system utilization while minimizing empty miles. To address this challenge, this study compares the performance of max-policy sharing agents and independent learners in an AMoD system using reinforcement learning. The results demonstrate the advantages of the max-policy sharing approach in improving Quality of Service (QoS) indicators such as completed orders, empty miles, lost customers due to competition, and out-of-charge events. The study identifies the importance of striking a balance between competition and cooperation among individual autonomous vehicles and tuning the frequency of policy sharing to avoid suboptimal policies. The findings suggest that the max-policy sharing approach has the potential to accelerate learning in multi-agent reinforcement learning systems, particularly under conditions of low exploration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.