Abstract

The potential application of intelligent reflecting surfaces (IRSs) for future wireless cellular communication systems has motivated the study of metasurface for achieving additional space degree of freedom, where IRS is used to enhance the desired signal strength and suppress the interference. In this paper, by using the additional design degree of freedom provided by the IRS, we jointly optimize the transmit beamforming vector at the BS and the reflective beamforming vector at the IRS to maximize the minimum rate in the IRS-aided multi-user multiple-input-single-output broadcast channel (MISO-BC), subject to the unit modulus constraints of the reflective beamforming vector. In order to solve the non-convex optimization problem, we propose an efficient algorithm based on alternating optimization. In particular, we optimize the transmit beamforming vectors via the second-order cone problem (SOCP) and reflective beamforming vector by using the semi-definite relaxation (SDR). Numerical results show that the use of IRS leads to significant higher SINR values than benchmark schemes without IRS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call