Abstract

The problem of efficient maximum-likelihood soft decision decoding of binary BCH codes is considered. It is known that those primitive BCH codes whose designed distance is one less than a power of two, contain subcodes of high dimension which consist of a direct-sum of several identical codes. The authors show that the same kind of direct-sum structure exists in all the primitive BCH codes, as well as in the BCH codes of composite block length. They also introduce a related structure termed the concurring-sum, and then establish its existence in the primitive binary BCH codes. Both structures are employed to upper bound the number of states in the minimal trellis of BCH codes, and develop efficient algorithms for maximum-likelihood soft decision decoding of these codes. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.