Abstract

In recent developments wind power has been gaining rapid usage as an alternative source of electrical power and there is need to formulate optimized control schemes for power generation. This paper presents a sensorless maximum power point tracking control methodology for a wind power generation system. For the sensorless vector control a sliding mode observer is utilized in the estimation of the rotor speed while the rotor position is estimated based on the flux linkage. The Powell method is introduced to improve the efficiency of the permanent magnet synchronous generator (PMSG) d-axis current optimization. To ensure robustness of the proposed paradigm to parameter variations, the windmill loss coefficients determining the optimal rotor speed are identified online. Results of simulations confirm the effectiveness of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call