Abstract

In view of the low accuracy of the traditional emotion recognition methods based on facial expressions, an emotion recognition method based on maximum weight multi-modal information fusion of electroencephalographs (EEGs) and facial expression information is proposed in this paper. First, the induced emotional EEG data is converted into the corresponding EEG topographic map data and sent to the convolutional network for training and outputting decision information. Second, the illumination compensation method is utilized to filter the noise of the face image data. Then, the face image data is trained in the multi-scale feature extraction network, and the decision information is output. Finally, aiming at the decision-level information fusion, a weighted fusion method is proposed in this paper for emotion recognition. Experimental tests show that the recognition accuracy of the multi-scale feature extraction network on the CK+ data set and Fer2013 data reached 94.4% and 72%, respectively. Simultaneously, the multi-modal information fusion method achieves 92.6% accuracy in emotion recognition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.