Abstract
In this article, we apply the maximum trimmed likelihood (MTL) approach [Hadi, A.S., Luceño, A., 1997. Maximum trimmed likelihood estimators: a unified approach, examples, and algorithms. Comput. Statist. Data Anal. 25, 251–272] to obtain the robust estimators of multivariate location and shape, especially for data mixed with continuous and categorical variables. The forward search algorithm [Atkinson, A.C., 1994. Fast very robust methods for the detection of multiple outliers. J. Amer. Statist. Assoc. 89, 1329–1339] is adapted to compute the proposed MTL estimates. A simulation study shows that the proposed estimator outperforms the classical maximum likelihood estimator when outliers exist in data. Real data sets are also used to illustrate the method and results of the detection of the outliers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.