Abstract
Alternating minimization algorithms are typically used to find interference alignment (IA) solutions for multiple-input multiple-output (MIMO) interference channels with more than K=3 users. For these scenarios many IA solutions exit, and the initial point determines which one is obtained upon convergence. In this paper, we propose a new iterative algorithm that aims at finding the IA solution that maximizes the average sum-rate. At each step of the alternating minimization algorithm, either the precoders or the decoders are moved along the direction given by the gradient of the sum-rate. Since IA solutions are defined by a set of subspaces, the gradient optimization is performed on the Grassmann manifold. The step size of the gradient ascent algorithm is annealed to zero over the iterations in such a way that during the last iterations only the interference leakage is being minimized and a perfect alignment solution is finally reached. Simulation examples are provided showing that the proposed algorithm obtains IA solutions with significant higher throughputs than the conventional IA algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.