Abstract

Multi-principal element alloys (MPEAs) containing three or more components in high concentrations render a tunable chemical short-range order (SRO). Leveraging large-scale atomistic simulations, we probe the limit of Hall-Petch strengthening and deformation mechanisms in a model CrCoNi alloy and unravel chemical ordering effects. The presence of SRO appreciably increases the maximum strength and lowers the propensity for faulting and structure transformation, accompanied by intensification of planar slip and strain localization. Deformation grains exhibit notably different microstructures and dislocation patterns that prominently depend on their crystallographic orientation and the number of active slip planes. Grain of single-planar slip attains the highest volume fraction of deformation-induced structure transformation, and grain with double-slip planes develops the densest dislocation network. These results advancing the fundamental understanding of deformation mechanisms and dislocation patterning in MPEAs suggest a mechanistic strategy for tuning mechanical behavior through simultaneously tailoring grain texture and local chemical order.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.