Abstract
We consider the problem of determining an upper bound for the value of a spectral risk measure of a loss that is a general nonlinear function of two factors whose marginal distributions are known but whose joint distribution is unknown. The factors may take values in complete separable metric spaces. We introduce the notion of Maximum Spectral Measure (MSM), as a worst-case spectral risk measure of the loss with respect to the dependence between the factors. The MSM admits a formulation as a solution to an optimization problem that has the same constraint set as the optimal transport problem but with a more general objective function. We present results analogous to the Kantorovich duality, and we investigate the continuity properties of the optimal value function and optimal solution set with respect to perturbation of the marginal distributions. Additionally, we provide an asymptotic result characterizing the limiting distribution of the optimal value function when the factor distributions are simulated from finite sample spaces. The special case of Expected Shortfall and the resulting Maximum Expected Shortfall is also examined. Funding: M. Ghossoub and D. Saunders acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada in the form of Discovery Grants [Grants 2018-03961 and 2017-04220, respectively].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.