Abstract
We study the maximum remaining service time in infinite-server queues of type M|G|∞ (at a given time and in a stationary regime). The following cases for the arrival flow rate are considered: (1) time-independent, (2) given by a function of time, (3) given by a random process. As examples of service time distributions, we consider exponential, hyperexponential, Pareto, and uniform distributions. In the case of a constant rate, we study effects that arise when the average service time is infinite (for power-law distribution tails). We find the extremal index of the sequence of maximum remaining service times. The results are extended to queues of type MX|G|∞, including those with dependent service times within a batch.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.