Abstract

Although it would be tempting to associate the Lewis structures to the maxima of the squared wave function |Psi|2, we prefer in this paper the use of domains of the three-dimensional space, which maximize the probability of containing opposite-spin electron pairs. We find for simple systems (CH4, H2O, Ne, N2, C2H2) domains comparable to those obtained with the electron localization function (ELF) or by localizing molecular orbitals. The different domains we define can overlap, and this gives an interesting physical picture of the floppiness of CH5+ and of the symmetric hydrogen bond in FHF-. The presence of multiple solutions has an analogy with resonant structures, as shown in the trans-bent structure of Si2H2. Correlated wave functions were used (MCSCF or Slater-Jastrow) in the Variational Quantum Monte Carlo framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.