Abstract

We prove weak and strong maximum principles, including a Hopf lemma, for C 2 subsolutions to equations defined by linear, second-order, linear, elliptic partial differential operators whose principal symbols vanish along a portion of the domain boundary. The boundary regularity property of the C 2 subsolutions along this boundary vanishing locus ensures that these maximum principles hold irrespective of the sign of the Fichera function. Boundary conditions need only be prescribed on the complement in the domain boundary of the principal symbol's vanishing locus. We obtain uniqueness and a priori maximum principle estimates for C 2 solutions to boundary value and obstacle problems defined by these boundary-degenerate elliptic operators with partial Dirichlet or Neumann boundary conditions. We also prove weak maximum principles and uniqueness for W 1, 2 solutions to the corresponding variational equations and inequalities defined with the aide of weighted Sobolev spaces. The domain is allowed to be unbounded when the operator coefficients and solutions obey certain growth conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call