Abstract

Abstract In this paper, the initial-boundary-value problems for the one-dimensional linear and non-linear fractional diffusion equations with the Riemann-Liouville time-fractional derivative are analyzed. First, a weak and a strong maximum principles for solutions of the linear problems are derived. These principles are employed to show uniqueness of solutions of the initial-boundary-value problems for the non-linear fractional diffusion equations under some standard assumptions posed on the non-linear part of the equations. In the linear case and under some additional conditions, these solutions can be represented in form of the Fourier series with respect to the eigenfunctions of the corresponding Sturm-Liouville eigenvalue problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.