Abstract
In this paper, we investigate maximum principle, convergence of sequences and angular limits for harmonic Bloch mappings. First, we give the maximum principle of harmonic Bloch mappings, which is a generalization of the classical maximum principle for harmonic mappings. Second, by using the maximum principle of harmonic Bloch mappings, we investigate the convergence of sequences for harmonic Bloch mappings. Finally, we discuss the angular limits of harmonic Bloch mappings. We show that the asymptotic values and angular limits are identical for harmonic Bloch mappings, and we further prove a result that applies also if there is no asymptotic value. A sufficient condition for a harmonic Bloch mapping has a finite angular limit is also given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.