Abstract
This study establishes some new maximum principle which will help to investigate an IBVP for multi-index Hadamard fractional diffusion equation. With the help of the new maximum principle, this paper ensures that the focused multi-index Hadamard fractional diffusion equation possesses at most one classical solution and that the solution depends continuously on its initial boundary value conditions.
Highlights
As is known, the maximum principle is one of the most effective tools to investigate ordinary differential equations
In [3], Korbol and Luchko generalized the mathematical model of variable-order spacetime fractional diffusion equation to analyze some financial data and considered the option pricing as an application of this model
In [4], the authors established the maximum principle for the multi-term time-space Riesz–Caputo fractional differential equation, uniqueness and continuous dependence of the solution as well as presented a numerical method for the specified equation
Summary
The maximum principle is one of the most effective tools to investigate ordinary (partial, evolution, fractional) differential equations. They proved the weak maximum principle and established the uniqueness of solutions to the IBVP with Dirichlet boundary conditions. In [4], the authors established the maximum principle for the multi-term time-space Riesz–Caputo fractional differential equation, uniqueness and continuous dependence of the solution as well as presented a numerical method for the specified equation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.