Abstract

In this paper, a robust and constraint feedback linearization controller (FLC) with a modified incremental conductance (Inc.Cond) is proposed for maximum power point tracking (MPPT) in the photovoltaic (PV) systems and overall closed-loop internal stability is guaranteed. The proposed technique is independent with respect to load and is robust against disturbances in the load voltage. A boost chopper converter is utilized as an interface between the PV panel and load to control the system at the best operating point. A modified Inc.Cond method based on current orientation and without division equations is presented. The Inc.Cond method is utilized to generate the desired current for the FLC. The FLC navigates the PV panel to the maximum power point with high speed, whereas the control signal (duty cycle) constraints are monitored. Finally, the MPPT technique is validated through simulation and experimental results and two scenarios are defined to confirm controller robustness and modified Inc.Cond performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call