Abstract
Fuel cells output power depends on the operating conditions, including cell temperature, oxygen partial pressure, hydrogen partial pressure, and membrane water content. In each particular condition, there is only one unique operating point for a fuel cell system with the maximum output. Thus, a maximum power point tracking (MPPT) controller is needed to increase the efficiency of the fuel cell systems. In this paper an efficient method based on the particle swarm optimization (PSO) and PID controller (PSO-PID) is proposed for MPPT of the proton exchange membrane (PEM) fuel cells. The closed loop system includes the PEM fuel cell, boost converter, battery and PSO-PID controller. PSO-PID controller adjusts the operating point of the PEM fuel cell to the maximum power by tuning of the boost converter duty cycle. To demonstrate the performance of the proposed algorithm, simulation results are compared with perturb and observe (P&O) and sliding mode (SM) algorithms under different operating conditions. PSO algorithm with fast convergence, high accuracy and very low power fluctuations tracks the maximum power point of the fuel cell system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.