Abstract

AbstractThe maximum power that can be obtained from a confined array of turbines in steady or tidal flows is considered using the two-dimensional shallow-water equations and representing the turbine farm by a uniform local increase in friction within a circle. Analytical results supported by dimensional reasoning and numerical solutions show that the maximum power depends on the dominant term in the momentum equation for flows perturbed on the scale of the farm. If friction dominates in the basic flow, the maximum power is a fraction (half for linear friction and 0.75 for quadratic friction) of the dissipation within the circle in the undisturbed state; if the advective terms dominate, the maximum power is a fraction of the undisturbed kinetic energy flux into the front of the turbine farm; if the acceleration dominates, the maximum power is similar to that for the linear frictional case, but with the friction coefficient replaced by twice the tidal frequency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.