Abstract

A simple Carnot-like irreversible power cycle is modeled with two isothermal and two adiabatic, irreversible processes. The generic source of internal irreversibility, deduced from the Clausius inequality, produces entropy at a rate proportional to the external heat conductance and the engine temperature ratio. This cycle is optimized for maximum power and maximum efficiency, and its performances compared to those of the endoreversible cycle, based on typical heat source and heat sink temperatures. Both cycles produce maximum power at the same engine temperature ratio, but the irreversible cycle prediction of maximum efficiency and heat conductance allocation between steam boiler and condenser, appear to be not only more realistic, but also more relevant to actual design considerations of power plants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.