Abstract

Given a binary dataset of positive and negative observations, a positive (negative) pattern is a subcube having a nonempty intersection with the positive (negative) subset of the dataset, and an empty intersection with the negative (positive) subset of the dataset. Patterns are the key building blocks in Logical Analysis of Data (LAD), and are an essential tool in identifying the positive or negative nature of “new” observations covered by them. We develop exact and heuristic algorithms for constructing a pattern of maximum coverage which includes a given point. It is shown that the heuristically constructed patterns can achieve 81–98% of the maximum possible coverage, while requiring only a fraction of the computing time of the exact algorithm. Maximum patterns are shown to be useful for constructing highly accurate LAD classification models. In comparisons with the commonly used machine learning algorithms implemented in the publicly available Weka software package, the implementation of LAD using maximum patterns is shown to be a highly competitive classification method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.