Abstract
It is known that the 3-uniform loose 3-cycle decomposes the complete 3-uniform hypergraph of order \(v\) if and only if \(v \equiv 0, 1,\text{ or }2 (\operatorname{mod} 9)\). For all positive integers \(\lambda\) and \(v\), we find a maximum packing with loose 3-cycles of the \(\lambda\)-fold complete 3-uniform hypergraph of order \(v\). We show that, if \(v \geq 6\), such a packing has a leave of two or fewer edges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.