Abstract
Let Kv(3)=(V,E) be the complete 3-uniform hypergraph, where the vertex set is V={x1,x2,⋯,xv}, in which the edge set E is of all triples. Let ST denote the special tetrahedron with four edges, where each edge contains three vertices of degree 2. In this paper, we consider the decomposition and packing of a complete 3-uniform hypergraph of an λ-fold special tetrahedron. Firstly, the necessary conditions for the existence of the λ-fold ST-decomposition are discussed in four distinct cases. Secondly, according to the recursive constructions, the required designs of small orders are found. For hypergraphs with large orders, they can be recursively generated using some designs of small orders. Then, it is proven that the above necessary conditions are sufficient. Finally, we prove that a maximum ST-packing of a complete 3-uniform hypergraph Kv(3) exists for all v≥6 and λ≥1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.