Abstract

The region of spacetime near the event horizon of a black hole can be viewed as a deep potential well at large gravitational redshift relative to distant observers. However, matter orbiting in this region travels at relativistic speeds and can impart a significant Doppler shift to its electromagnetic emission, sometimes resulting in a net observed blueshift at infinity. Thus, a black hole broadens the line emission from monochromatic sources in its vicinity into a smoothly decaying "red wing"--whose flux vanishes at large redshift--together with a "blue blade" that retains finite flux up to a sharp edge corresponding to the maximum observable blueshift. In this paper, we study the blue blade produced by isotropic monochromatic emitters on circular equatorial orbits around a Kerr black hole, and obtain simple relations describing how the maximum blueshift encodes black hole spin and inclination. We find that small values of the maximum blueshift yield an excellent probe of inclination, while larger values provide strong constraints on spin or inclination in terms of the other. These results bear direct relevance to ongoing and future observations aiming to infer the angular momentum of supermassive black holes from the broadening of their surrounding line emission.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.