Abstract
In this paper, we study nearest prototype classifiers, which classify data instances into the classes to which their nearest prototypes belong. We propose a maximum-margin model for nearest prototype classifiers. To provide the margin, we define a class-wise discriminant function for instances by the negatives of distances of their nearest prototypes of the class. Then, we define the margin by the minimum of differences between the discriminant function values of instances with respect to the classes they belong to and the values of the other classes. The optimization problem corresponding to the maximum-margin model is a difference of convex functions (DC) program. It is solved using a DC algorithm, which is ak-means-like algorithm, i.e., the members and positions of prototypes are alternately optimized. Through a numerical study, we analyze the effects of hyperparameters of the maximum-margin model, especially considering the classification performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Advanced Computational Intelligence and Intelligent Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.