Abstract
This paper considers the identification problems of Hammerstein finite impulse response moving average (FIR-MA) systems using the maximum likelihood principle and stochastic gradient method based on the key term separation technique. In order to improve the convergence rate, a maximum likelihood multi-innovation stochastic gradient algorithm is presented. The simulation results show that the proposed algorithms can effectively estimate the parameters of the Hammerstein FIR-MA systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.