Abstract

The combination of grating-based phase-contrast imaging with X-ray microscopy can result in a complicated image formation. Generally, transverse shifts of the interference fringes are nonlinearly dependent on phase differences of the measured wave front. We present an iterative reconstruction scheme based on a regularized maximum likelihood cost function that fully takes this dependency into account. The scheme is validated by numerical simulations. It is particularly advantageous at low photon numbers and when the premises for deconvolution-based reconstructions are not met. Our reconstruction scheme hence enables a broader applicability of X-ray grating interferometry in imaging and wave front sensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.